skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tancredi, Lorenzo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper we consider signal-background interference effects in Higgs-mediated diphoton production at the LHC. After reviewing earlier works that show how to use these effects to constrain the Higgs boson total decay width, we provide predictions beyond NLO accuracy for the interference and related observables, and study the impact of QCD radiative corrections on the Higgs width determination. In particular, we use the so-called soft-virtual approximation to estimate interference effects at NNLO in QCD. The inclusion of these effects reduces the NNLO prediction for the total Higgs cross-section in the diphoton channel by about 1.7%. We study in detail the impact of QCD corrections on the Higgs-boson line-shape and its implications for the Higgs boson width extraction. In particular, we find that the shift of the Higgs resonance peak arising from interference effects gets reduced by about 30% with respect to the NLO prediction. Assuming an experimental resolution of about 150 $$\textrm{MeV}$$ MeV on interference-induced modifications of the Higgs-boson line-shape, our NNLO analysis shows that one could constrain the Higgs-boson total width to about 10–20 times its Standard Model value. 
    more » « less
  2. A bstract We present a calculation of the helicity amplitudes for the process gg → γγ in three-loop massless QCD. We employ a recently proposed method to calculate scattering amplitudes in the ’t Hooft-Veltman scheme that reduces the amount of spurious non-physical information needed at intermediate stages of the computation. Our analytic results for the three-loop helicity amplitudes are remarkably compact, and can be efficiently evaluated numerically. This calculation provides the last missing building block for the computation of NNLO QCD corrections to diphoton production in gluon fusion. 
    more » « less
  3. A bstract We compute the three-loop corrections to the helicity amplitudes for q $$ \overline{q} $$ q ¯ → Q $$ \overline{Q} $$ Q ¯ scattering in massless QCD. In the Lorentz decomposition of the scattering amplitude we avoid evanescent Lorentz structures and map the corresponding form factors directly to the physical helicity amplitudes. We reduce the amplitudes to master integrals and express them in terms of harmonic polylogarithms. The renormalised amplitudes exhibit infrared divergences of dipole and quadrupole type, as predicted by previous work on the infrared structure of multileg scattering amplitudes. We derive the finite remainders and present explicit results for all relevant partonic channels, both for equal and different quark flavours. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    A bstract We present the leading colour and light fermionic planar two-loop corrections for the production of two photons and a jet in the quark-antiquark and quark-gluon channels. In particular, we compute the interference of the two-loop amplitudes with the corresponding tree level ones, summed over colours and polarisations. Our calculation uses the latest advancements in the algorithms for integration-by-parts reduction and multivariate partial fraction decomposition to produce compact and easy-to-use results. We have implemented our results in an efficient C++ numerical code. We also provide their analytic expressions in Mathematica format. 
    more » « less